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Figure 1.
A simple protocol for the synthesis of an aesthetically pleasing ‘oxa-basket’ (5-methoxy-2,8,13-trioxapen-
tacyclo[7.2.1.1.5,120.4,1106,10]tridecane-3,7-dione), possessing 9-oxa-noradamantane core, is described. The
readily available diquinane based dichloro bis-c-lactone precursor upon treatment with MeSO3H furnished
dichloro ‘oxa-basket’ which was dechlorinated using TBTH/AIBN to obtain the title compound. The key role
of the chlorines was demonstrated by replacement with hydrogen or allyl substituents which redirects the
cascade to simple hydrolysis products.

� 2009 Elsevier Ltd. All rights reserved.
The design and synthesis of aesthetically pleasing and architec-
turally challenging unnatural products has stimulated synthetic
chemists to construct marvelous scaffolds.1–5 In this context, the first
tactical synthesis of cubane2 by Eaton et al. is a landmark in the
synthesis of topologically demanding unnatural products which
continues to fascinate with its rich chemistry and novel applica-
tions.6 Various architecturally interesting unnatural products,
oxa-bowls,3a–c thia-bowls,3d ladderanes,3e,3f prismanes,3g dodeca-
hedrane,4,3g and other cage compounds5 were synthesized by ingen-
uous strategies. Our interest in this area led us to the synthesis of
interesting oxa-bridged compounds7 and, more recently, con-
strained bowl shaped molecules, starting from norbornyl a-diketone
building blocks.8 In continuation of our efforts we herein report a
short synthesis of an aesthetically pleasing molecule possessing
the 9-oxa-noradamantane core (Fig. 1). The two-atom bridges be-
tween C2–C4 and C6–C8 on either side of this core with a C1–C5
oxa-bridge gives rise to a molecular shape resembling a basket.

We envisioned that ‘oxa-basket’ (R = H, Fig. 1) should be amena-
ble via SN2 displacement of a mesylate by an endo-hydroxy group
in 2. We have demonstrated previously an efficient route to ketal 1
and other related diquinane based bis-c-lactones in a few steps
ll rights reserved.
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from an easily available starting material.8a It was envisaged that
hydrolysis of ketal 1 followed by a stereoselective reduction from
the sterically accessible exo-face would furnish endo-alcohol 2 or
even the target ‘oxa-basket’ directly.
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The ketal moiety in 1 was found to be inert under usual hydro-
lytic conditions. Further, being sparingly soluble in common or-
ganic solvents, it posed problems of handling and monitoring
the reaction progress using routine methods. Therefore, b-hydro-
xy bis-lactone 3, obtained from a different route compared to 1,8a

was subjected to MeSO3H reaction. In this case, the starting
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Scheme 1. Acid mediated reaction of 3.
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Scheme 2. A plausible mechanism for the formation of 5.

Figure 2. X-ray structure of methyl carbonate 5.
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material was consumed to furnish a sparingly soluble reaction
mixture which was treated with excess Ac2O and pyridine. Inter-
estingly, a triacetate derivative 4 was isolated in very good yield
(Scheme 1).9 Acid mediated hydrolysis of the ketal 3 followed by
decarboxylation and subsequent acylation of the enolizable spe-
cies thus formed under Ac2O–pyridine conditions is a likely route
to 4.

After realizing that the methanesulfonic acid mediated hydroly-
sis of the ketal occurs smoothly in the case of 3, we revisited 1 and
exposed it to identical reaction conditions. Earlier we had
established that the mesylate group in 1 could be displaced by a
hydroxyl using NaOH in a SN2 fashion to obtain the corresponding
a-hydroxy derivative.8a Based on this observation, the reaction
mixture obtained after reacting 1 with methanesulfonic acid was
treated with NaOH in MeOH in order to replace the mesylate with
a hydroxyl group with inversion of stereochemistry prior to acyla-
tion. However, to our surprise, a carbonate derivative 5 was
obtained (Scheme 2).9 This was evident from one extra carbon sig-
nal at d 153.1 in 13C NMR spectrum while the 1H NMR spectrum
showed characteristic methyl resonances for carbonate, mesylate
and acetate groups, in addition to other peaks. Finally, the struc-
ture of carbonate derivative 5 was unambiguously secured from
single crystal X-ray analysis (Figure 2).10 A plausible mechanism
depicting the formation of product 5 appears in Scheme 2. After
the initial acid mediated ketal hydrolysis to the corresponding ke-
tone, opening of the lactone by methoxide gives the enolate. Sub-
sequent treatment with Ac2O–pyridine furnishes the carbonate 5
as shown in Scheme 2.

The difficulty encountered in intercepting the ketal prompted
us to change our strategy. Instead of synthesizing endo-alcohol 2
to eventually form the oxa-bridge of the target through an intra-
molecular displacement, we thought of shifting the endo-alcohol
functionality to the other terminus to form an oxa-bridge through
a mixed ketal. For this purpose, we turned our attention to endo-
hydroxy bis-c-lactone 6, accessible in excellent yield from
mesylate 1 simply by a brief exposure to NaOH/MeOH at room
temperature.8a When 6 was subjected to methanesulfonic acid in
1,2-dichloroethane as solvent and refluxed over a period of 3 h,
an insoluble and highly crystalline compound 7 was obtained in
high yield (Scheme 3).11 The presence of four 1H NMR and seven
13C NMR signals strongly hinted at the symmetric nature of the
molecule. Disappearance of one OMe signal at d �53 and the emer-
gence of a signal at d 107.2 in the 13C NMR spectrum indicated the
formation of a mixed ketal. Unequivocal proof for the proposed
structure 7 was obtained by performing a single crystal X-ray anal-
ysis (Scheme 3).10
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Radical mediated dechlorination of 7 furnished the title com-
pound. Subjecting 7 to TBTH/AIBN reduction in benzene gave
bis-reduced oxa-basket 8 (Scheme 3).9 To probe the role, if any,
of two chlorine atoms in 6 on the key cyclization, two reactions
were set up with endo-hydroxy bis-c-lactones 9 and 108a lacking
chlorines under identical conditions (Scheme 4). Bis-allyl deriva-
tive 9 was synthesized in good yield via radical mediated allylation
employing allyl tri-n-butyltin (ATBT) in presence of catalytic AIBN
(Scheme 3).12 Surprisingly the hydrolyzed products 11 and 12
rather than the expected cyclized products were formed in high
yield. This clearly demonstrated the pivotal role played by the
chlorines in steering the key cyclization. The symmetric nature of
11 and 12 was obvious from NMR spectral data and characteristic
carbonyl signals at d 200.5 and 199.5 in 13C NMR spectra further
confirmed the assigned structures.9 Further, separately treating
11 or 12 with MeSO3H in methanol under reflux conditions also
failed to furnish the cyclized products as shown in Scheme 4.

In conclusion, an aesthetically pleasing ‘oxa-basket’ possessing
the 9-oxa-noradamantane core has been synthesized in a single
transformation. Halogen substituents steer the crucial ring closure
to oxa-basket while allyl and proton substituents do not.
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